No more fake news

|
  • 0

No more fake news

Monday, 08 October 2018 | IANS

No more fake news

A new Machine Learning system will help determine whether a news source is biased or accurate

To combat fake news, a team of Massachusetts Institute of Technology (MIT) researchers have developed a new Machine Learning (ML) system that helps to determine whether a news source is accurate or biased.

The researchers believe that the best approach is to focus not on the factuality of individual claims but on the news sources themselves.

“If a website has published fake news before, there’s a good chance they’ll do it again. By automatically scraping data about these sites, the hope is that our system can help figure out which ones are likely to do it in the first place,” said lead author Ramy Baly from MIT’s Computer Science and Artificial Intelligence Lab (CSAIL).

The system needs only about 150 articles to reliably detect if a news source can be trusted, suggests the study to be presented at the 2018 Empirical Methods in Natural Language Processing (EMNLP) conference in Brussels.

For the study, the researchers from MIT and the Qatar Computing Research Institute (QCRI), took data from Media Bias/Fact Check (MBFC) — a website with human fact-checkers who analyse the accuracy and biases of more than 2,000 news sites, from MSNBC and Fox News to low-traffic content farms.

The team then fed that data to a ML algorithm called a Support Vector Machine (SVM) classifier, and programmed it to classify news sites the same way as MBFC.

When given a new news outlet, the system was 65 per cent accurate at detecting whether it has a high, low or medium level of “factuality,” and roughly 70 per cent accurate in detecting if it is left-leaning, right-leaning or moderate.

The team determined that the most reliable ways to detect both fake news and biased reporting were to look at the common linguistic features across the source’s stories, including sentiment, complexity and structure.

For example, fake news outlets were found to be more likely to use language that is hyperbolic, subjective and emotional.

In terms of bias, left-leaning outlets were more likely to have language that related to concepts of harm/care and fairness/reciprocity, compared to other qualities such as loyalty, authority and sanctity.

State Editions

1.52L students avail CM Medhavi Vidyarthi Yojana

25 May 2020 | Staff Reporter | Lucknow

Governor, CM greet people of MP on occasion of Id-ul-Fitr

25 May 2020 | Staff Reporter | Bhopal

No labourer employed in R'gada MNREGS work

25 May 2020 | BADAl TAH | Bhubaneswar

News Briefs

25 May 2020 | PNS | Bhubaneswar

Massive fire breaks out in Apoorti market godown

25 May 2020 | Staff Reporter | Bhopal

Sunday Edition

A cupful of health

24 May 2020 | Excerpt | Agenda

from Corona to Karuna

24 May 2020 | Radhanath Swami | Agenda

Resurgence of Nature

24 May 2020 | Madan lall Manchanda | Agenda

For us and the world

24 May 2020 | Ajit Kumar Bishnoi | Agenda

Astroturf | Be live to collective obligation

24 May 2020 | Bharat Bhushan Padmadeo | Agenda

Talktime : ‘I regret not retaliating to verbal abuse’

24 May 2020 | MUSBA HASHMI | Sunday Pioneer